Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Sci Food Agric ; 100(4): 1558-1569, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31769034

RESUMO

BACKGROUND: The increasing demand in Brazil and the world for products derived from the açaí palm (Euterpe oleracea Mart) has generated changes in its production process, principally due to the necessity of maintaining yield in situations of seasonality and climate fluctuation. The objective of this study was to estimate açaí fruit yield in irrigated system (IRRS) and rainfed system or unirrigated (RAINF) using agrometeorological models in response to climate conditions in the eastern Amazon. Modeling was done using multiple linear regression using the 'stepwise forward' method of variable selection. Monthly air temperature (T) values, solar radiation (SR), vapor pressure deficit (VPD), precipitation + irrigation (P + I), and potential evapotranspiration (PET) in six phenological phases were correlated with yield. The thermal necessity value was calculated through the sum of accumulated degree days (ADD) up to the formation of fruit bunch, as well as the time necessary for initial leaf development, using a base temperature of 10 °C. RESULTS: The most important meteorological variables were T, SR, and VPD for IRRS, and for RAINF water stress had the greatest effect. The accuracy of the agrometeorological models, using maximum values for mean absolute percent error (MAPE), was 0.01 in the IRRS and 1.12 in the RAINF. CONCLUSION: Using these models yield was predicted approximately 6 to 9 months before the harvest, in April, May, November, and December in the IRRS, and January, May, June, August, September, and November for the RAINF. © 2019 Society of Chemical Industry.


Assuntos
Irrigação Agrícola/métodos , Euterpe/crescimento & desenvolvimento , Brasil , Clima , Euterpe/química , Euterpe/metabolismo , Euterpe/efeitos da radiação , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/efeitos da radiação , Conceitos Meteorológicos , Modelos Estatísticos , Estações do Ano , Luz Solar , Temperatura , Água/análise , Água/metabolismo
2.
J Proteome Res ; 19(1): 437-445, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31814414

RESUMO

Quantitative proteome analysis of four developmental stages of pericarp tissues of the açaí berry (Euterpe oleracea Mart.) was performed by the isobaric labeling of peptides with iTRAQ 4-plex, hydrophilic interaction liquid chromatography pre-fractionation of labeled peptides, and high-performance mass spectrometry analysis. This analysis resulted in the identification of 4286 proteins, of which 476 presented differential abundance between the stages. The differential abundance of these proteins was seen to be coordinated with the metabolic demands during cell division, lignification, and cell expansion at developmental stages 1 and 2 as well as phenolic acid accumulation and metabolic changes in the fruit maturation at developmental stages 3 and 4. The distinct accumulation of anthocyanins observed in the pericarp at developmental stage 4 was correlated with the increase in abundance of some key biosynthetic enzymes, such as leucoanthocyanidin dioxygenase, anthocyanidin O-3-glycosyltransferase, and UDP-glycosyltransferase. Here, evidence is also provided for the presence in the açaí berry of secondary metabolites not previously described in açaí, such as pterostilbene, matairesinol, and furaneol. Together, these results will pave the way for studies aimed at the genetic improvement of the nutritional properties of this important fruit crop.


Assuntos
Euterpe/crescimento & desenvolvimento , Euterpe/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Antocianinas/análise , Antocianinas/metabolismo , Metabolismo dos Carboidratos , Enzimas/metabolismo , Frutas/metabolismo , Espectrometria de Massas , Proteínas de Plantas/análise , Proteômica/métodos , Metabolismo Secundário
3.
Environ Manage ; 59(6): 1017-1033, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28188416

RESUMO

The selection of forest fragments for conservation is usually based on spatial parameters as forest size and canopy integrity. This strategy assumes that chosen fragments present high conservation status, ensuring biodiversity and ecological functions. We argue that a well-preserved forest fragment that remains connected by the landscape structure, does not necessarily hold attributes that ensure the presence of keystone species. We also discuss that the presence of keystone species does not always mean that it has the best conditions for its occurrence and maintenance. We developed a model to select areas in forest landscapes to be prioritized for protection based on suitability curves that unify and compare spatial indicators of three categories: forest fragment quality, landscape quality, and environmental conditions for the occurrence of a keystone species. We use a case study to compare different suitability degrees for Euterpe edulis presence, considered an important functional element in Atlantic Forest (São Paulo, Brazil) landscapes and a forest resource for local people. The results show that the identification of medium or advanced stage fragments as singular indicator of forest quality does not guarantee the existence or maintenance of this keystone species. Even in some well-preserved forest fragments, connected to others and with palm presence, the reverse J-shaped distribution of the population size structure is not sustained and these forests continue to be threatened due to human disturbances.


Assuntos
Conservação dos Recursos Naturais/métodos , Euterpe/crescimento & desenvolvimento , Florestas , Modelos Teóricos , Biodiversidade , Brasil , Ecologia , Humanos , Densidade Demográfica
4.
Braz J Biol ; 76(1): 66-72, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26909625

RESUMO

The introduction of a species may alter ecological processes of native populations, such as pollination and dispersal patterns, leading to changes in population structure. When the introduced and the native species are congeners, interference in pollination can also lead to hybridization. We aimed to understand the ecological aspects of Euterpe oleracea introduction in the Atlantic forest and the possible consequences for the conservation of the native congener Euterpe edulis. We analysed the population structure of palm populations, including hybrids, and observed the interaction with frugivorous birds of both palm species after E. oleracea introduction. We observed that E. edulis had significantly lower density and a smaller number of seedlings when occurring with E. oleracea. Native and introduced Euterpe species shared nine frugivorous bird species. E. oleracea and hybrids had dispersed outside the original planting area. Consequently, the risks of introduction of E. oleracea may mostly be related to the disruption of interactions between E. edulis and frugivorous birds and the spontaneous production of hybrids. Finally, the cultivation of E. oleracea and hybrids in Atlantic rainforest could affect the conservation of the already endangered E. edulis.


Assuntos
Euterpe/fisiologia , Cadeia Alimentar , Hibridização Genética , Dispersão Vegetal , Brasil , Conservação dos Recursos Naturais , Euterpe/genética , Euterpe/crescimento & desenvolvimento , Espécies Introduzidas , Dinâmica Populacional , Floresta Úmida , Especificidade da Espécie
5.
Braz. j. biol ; 76(1): 66-72, Feb. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-774494

RESUMO

Abstract The introduction of a species may alter ecological processes of native populations, such as pollination and dispersal patterns, leading to changes in population structure. When the introduced and the native species are congeners, interference in pollination can also lead to hybridization. We aimed to understand the ecological aspects of Euterpe oleracea introduction in the Atlantic forest and the possible consequences for the conservation of the native congener Euterpe edulis. We analysed the population structure of palm populations, including hybrids, and observed the interaction with frugivorous birds of both palm species after E. oleracea introduction. We observed that E. edulis had significantly lower density and a smaller number of seedlings when occurring with E. oleracea. Native and introduced Euterpe species shared nine frugivorous bird species. E. oleracea and hybrids had dispersed outside the original planting area. Consequently, the risks of introduction of E. oleracea may mostly be related to the disruption of interactions between E. edulis and frugivorous birds and the spontaneous production of hybrids. Finally, the cultivation of E. oleracea and hybrids in Atlantic rainforest could affect the conservation of the already endangered E. edulis.


Resumo A introdução de uma espécie pode alterar processos ecológicos de populações nativas, tais como padrões de polinização e dispersão, levando a mudanças na estrutura populacional. Quando espécies introduzidas e nativas são congêneres, a interferência na polinização pode levar também à hibridização. Nossos objetivos foram entender os aspectos ecológicos da introdução de Euterpe oleracea na Floresta Atlântica e as possíveis consequências sobre a conservação da congênere nativa Euterpe edulis. Para isso, analisamos a estrutura populacional, incluindo híbridos, e observamos a interação de aves frugívoras com ambas as espécies de palmeira após a introdução de E. oleracea. Observamos que E. edulis apresentou densidade total e número de plântulas menores quando coocorrente com E. oleracea. As palmeiras congenéricas compartilharam nove espécies de aves frugívoras. E. oleracea e híbridos foram dispersos além da área original de plantio. Consequentemente, os riscos da introdução de E. oleracea podem estar principalmente relacionados com o possível deslocamento de interações entre E. edulis e aves frugívoras e com a produção de híbridos. Desta forma, o cultivo de E. oleracea e híbridos podem afetar a conservação da já ameaçada E. edulis.


Assuntos
Euterpe/fisiologia , Cadeia Alimentar , Hibridização Genética , Dispersão Vegetal , Brasil , Conservação dos Recursos Naturais , Euterpe/genética , Euterpe/crescimento & desenvolvimento , Espécies Introduzidas , Dinâmica Populacional , Floresta Úmida , Especificidade da Espécie
6.
Tree Physiol ; 34(6): 630-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24898220

RESUMO

Physiological characteristics of saplings can be considered one of the most basic constraints on species distribution. The shade-tolerant arborescent palm Euterpe edulis Mart. is endemic to the Atlantic Forest of Argentina, Brazil and Paraguay. At a local scale, saplings of this species growing in native forests are absent in gaps. We tested the hypothesis whether sensitivity to photoinhibition or hydraulic architecture constrains the distribution of E. edulis saplings in sun-exposed forest environments. Using shade houses and field studies, we evaluated growth, survival, hydraulic traits and the susceptibility of Photosystem II to photoinhibition in E. edulis saplings under different growth irradiances. Survival rates in exposed sites in the field were very low (a median of 7%). All saplings exhibited photoinhibition when exposed to high radiation levels, but acclimation to a high radiation environment increased the rate of recovery. Petiole hydraulic conductivity was similar across treatments regardless of whether it was expressed per petiole cross-sectional area or per leaf area. At the plant level, investment in conductive tissues relative to leaf area (Huber values) increased with increasing irradiance. Under high irradiance conditions, plants experienced leaf water potentials close to the turgor-loss point, and leaf hydraulic conductance decreased by 79% relative to its maximum value. Euterpe edulis saplings were able to adjust their photosynthetic traits to different irradiance conditions, whereas hydraulic characteristics at the leaf level did not change across irradiance treatments. Our results indicate that uncoupling between water demand and supply to leaves apparently associated with high resistances to water flow at leaf insertion points, in addition to small stems with low water storage capacity, weak stomatal control and high vulnerability of leaves to hydraulic dysfunction, are the main ecophysiological constraints that prevent the growth and survival of E. edulis saplings in gaps in the native forest where native lianas and bamboos show aggressive growth.


Assuntos
Euterpe/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Aclimatação , Euterpe/crescimento & desenvolvimento , Euterpe/efeitos da radiação , Florestas , Luz , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos da radiação , Árvores
7.
Am J Bot ; 101(6): 1023-1028, 2014 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-24907255

RESUMO

• Premise of the study: Environmental heterogeneity is a strong selective force shaping adaptation and population dynamics across temporal and spatial scales. Natural and anthropogenic gradients influence the variation of environmental and biotic factors, which determine population demography and dynamics. Successional gradients are expected to influence demographic parameters, but the relationship between these gradients and the species life history, habitat requirements, and degree of variation in demographic traits remains elusive.• Methods: We used the palm Euterpe precatoria to test the effect of successional stage on plant demography within a continuous population. We calculated demographic parameters for size stages and performed matrix analyses to investigate the demographic variation within primary and secondary forests of La Selva, Costa Rica.• Key results: We observed differences in mortality and recruitment of small juveniles between primary and secondary forests. Matrix models described satisfactorily the chronosequence of population changes, which were characterized by high population growth rate in disturbed areas, and decreased growth rate in old successional forests until reaching stability.• Conclusions: Different demographic parameters can be expressed in contiguous subpopulations along a gradient of successional stages with important consequences for population dynamics. Demographic variation superimposed on these gradients contributes to generate subpopulations with different demographic composition, density, and ecological properties. Therefore, the effects of spatial variation must be reconsidered in the design of demographic analyses of tropical palms, which are prime examples of subtle local adaptation. These considerations are crucial in the implementation of management plans for palm species within spatially complex and heterogeneous tropical landscapes.


Assuntos
Euterpe/crescimento & desenvolvimento , Florestas , Costa Rica , Dinâmica Populacional , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...